Exercise 70

Find a parabola with equation $y=a x^{2}+b x+c$ that has slope 4 at $x=1$, slope -8 at $x=-1$, and passes through the point $(2,15)$.

Solution

Take the derivative of the given function.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(a x^{2}+b x+c\right) \\
& =\frac{d}{d x}\left(a x^{2}\right)+\frac{d}{d x}(b x)+\frac{d}{d x}(c) \\
& =a \frac{d}{d x}\left(x^{2}\right)+b \frac{d}{d x}(x)+\frac{d}{d x}(c) \\
& =a(2 x)+b(1)+(0) \\
& =2 a x+b
\end{aligned}
$$

The graph of y has slope 4 at $x=1$ and slope -8 at $x=-1$.

$$
\begin{aligned}
2 a(1)+b & =4 \\
2 a(-1)+b & =-8
\end{aligned}
$$

Solve this system of equations for a and b.

$$
a=3 \quad b=-2
$$

Consequently,

$$
y=3 x^{2}-2 x+c .
$$

Use the fact that $y=15$ when $x=2$ to determine c.

$$
y(2)=3(2)^{2}-2(2)+c=15
$$

Solve for c.

$$
c=7
$$

Therefore, the parabola that has slope 4 at $x=1$, slope -8 at $x=-1$, and passes through the point $(2,15)$ is

$$
y=3 x^{2}-2 x+7 .
$$

